isolated abutment - перевод на арабский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

isolated abutment - перевод на арабский

THEOREM
Isolated zeros theorem; Isolated zeroes theorem

isolated abutment      
دِعْمَةٌ مَعْزولَة
isolated abutment      
‎ دِعْمَةٌ مَعْزولَة,دِعْمَةٌ مُتَوَسِّطَة‎
abutment         
  • Abutment for a large steel arch bridge
  • rail bridge]] and earthen fill of the bridge approach embankment at Old Town Station Staten Island Railway - Staten Island, New York
  • Brick abutment supporting disused tramway over the [[Yass River]] in [[Yass, New South Wales]]
SUBSTRUCTURE AT THE ENDS OF A BRIDGE SPAN OR DAM SUPPORTING ITS SUPERSTRUCTURE
Abutments; Bridge abutments; Bridge abutment
متاخمة ، مُجاورة مُلتقى دعامة جسر ، كتف قنطرة

Определение

Abutment
·noun State of abutting.
II. Abutment ·noun That on or against which a body abuts or presses.
III. Abutment ·noun In breech-loading firearms, the block behind the barrel which receives the pressure due to recoil.
IV. Abutment ·noun The solid part of a pier or wall, ·etc., which receives the thrust or lateral pressure of an arch, vault, or strut.
V. Abutment ·noun A fixed point or surface from which resistance or reaction is obtained, as the cylinder head of a steam engine, the fulcrum of a lever, ·etc.

Википедия

Identity theorem

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } ), if f = g on some S D {\displaystyle S\subseteq D} , where S {\displaystyle S} has an accumulation point, then f = g on D.

Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informally, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, say, continuous functions which are "soft").

The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series.

The connectedness assumption on the domain D is necessary. For example, if D consists of two disjoint open sets, f {\displaystyle f} can be 0 {\displaystyle 0} on one open set, and 1 {\displaystyle 1} on another, while g {\displaystyle g} is 0 {\displaystyle 0} on one, and 2 {\displaystyle 2} on another.